Unidad IV: Programacion concurrente (MultiHilos)
4.1. Concepto de hilo

Hilo (theread) llamado también proceso ligero o subproceso, es la unidad
de ejecucion de un proceso y esta asociado con una secuencia de instrucciones
un conjunto de registros y una pila. Cuando se crea un proceso el S.O crea su
primer hilo (hilo primario) en la cual puede,a su vez,crear hilos adicionales. esto
pone de manifiesto que un proceso no ejecuta,si no que es solo el espacio de

direcciones donde recide el cédigo que es ejecutado mediante uno 0 mas hilos.

En un S.O tradicional. Cada proceso tiene un espacio de direcciones y
un unico hilo de control por ejemplo, considere que un programa que incluya la
siguiente secuencia de operaciones para actualizar el saldo de una cuenta
bancaria cuando se efectia un nuevo ingreso:

Saldo=Cuenta.ObtenerSaldo ();

Saldo+=ingreso;

Cuenta.EstablecerSaldo (saldo);

Este modelo de programacién, en el que se ejecuta un solo hilo, es en el que
estamos acostumbrados a trabajar habitualmente. Pero, siguiendo con el ejemplo
anterior piensa en un banco real; en el varios cajeros pueden
actuar simultaneamente. Ejecutar el mismo programa por cada uno de los cajeros
tiene un costo elevado (recuerde los recursos que necesita). En cambio si el
programa permitiera lanzar un hilo por cada peticion de cada cajero para actualizar
una cuenta, estariamos en el caso multiples hilos ejecutandose concurrente
mente (multitriandi) . Esta caracteristica ya es una realidad en los S.O modernos
de hoy y como consecuencia contemplada en los lenguajes

de programacion actuales.

Cada hilo se ejecuta de forma estrictamente secuencial y tiene su propia pila en
estados de los registros de UCP y su propio contador de un programa en cambio

comparte el mismo espacio de direcciones, lo que significa compartir también las



mismas variables globales, el mismo conjunto de ficheros abiertos, procesos hijos
(no hilos hijos), sefiales, seméforos, etc.

Los hilos comparten la UCP de la misma forma que lo hacen los procesos pueden
crear hilos hijos y se pueden bloquear no obstante mientras un hilo del mismo
proceso, en el caso de hilos soportados por el kernel (nacleo del S.O: programas
en ejecucion que hacen que el sistema funcione), no sucediendo lo mismo con los
hilos soportados por una aplicacion por ejemplo en Windows NT todos los hilos
son soportados por el Kernel; imaginemos que alguien llagaa un cajero para
depositar dinero en una cuenta y casi al mismo tiempo un segundo cliente realiza
la misma operacién sobre la misma cuanta en el segundo cajero quedara
bloqueado asta que el registro que esta siendo actualizado por el primer cajero

quede liberado.

4.2. Comparacion de un programa de flujo unico contra
uno de flujo multiple

4.3. Creacion y control de hilos

Los hilos de java se pueden crear en dos formas: escribiendo una nueva clase
derivada de Theread, o bien haciendo una clase existente implementa la interfaz

Runnable .

La clase Thread,que implemente la interfaz Runnable,de forma resimida,esta

definida asi:

public class Thread extends Object implements Runnable

/IAtributos



static int MAX_PRIORITY;

//Prioridad maxima que un hilo puede tener.

static int MIN_PRIORITY;

//Prioridad minima que un hilo puede tener.

static int NORM_PRIORITY;

//Prioridad asignada por omision a un hilo.

/IConstructores

Thread ([argumentos])

/IMétodos

static Theread currentThread()

//IDevuelve una referencia al hilo que actualmente esta en ejecucion.

long

/IDevuelve el identificador del

String getName()

//IDevuelve el nombre del hilo.

getlD()

hilo.



int getPriority()

//Devuelve la prioridad del hilo.

void interrupt()

//[Envia este hilo al estado de preparado.

boolean isAlive()

IIVerifica si este hilo esta vivo (no ha terminado).

boolean isDaemon()

/IVerifica si este hilo es un demonio. Se da este nombre a

/lun hilo se ejecuta en segundo plano, realizando una

/loperacién especifica en tiempos predefinidos, o bien en

llrespuestas a ciertos

boolean is

/IVerifica si este hilo ha sido interrumpido.

void join([milisegundos|. nanosegundos]])

//[Espera indefinidamente o el tiempo especificado,a que este

/hilo termine (a gue

void run()

eventos.

Interrupted()

muera).



4.4. Sincronizacion de hilos

Cuando se estan utilizando hilos multiples, algunas veces es necesario coordinar
las actividades de dos o més. El proceso por el cual se logra esto se
llama sincronizacion. La razon mas comun para la sincronizacién es cuando dos o
mas hilos necesitan acceso a un recurso compartido que solo puede ser utilizado
por un hilo a la vez. Otra razén para la sincronizacion es cuando un hilo esta
esperando un evento causado por otro hilo. En este caso, debe de haber algin
medio por el cual el primer hilo se mantenga en estado suspendido hasta que el

evento ocurra.

La sincronizacién esta soportada por la palabra clave synchronized y por unos

cuantos métodos bien definidos que tienen todos los objetos.



