
Unidad IV: Programación concurrente (MultiHilos)

4.1. Concepto de hilo

Hilo (theread) llamado también proceso ligero o subproceso, es la unidad

de ejecución de un proceso y esta asociado con una secuencia de instrucciones

un conjunto de registros y una pila. Cuando se crea un proceso el S.O crea su

primer hilo (hilo primario) en la cual puede,a su vez,crear hilos adicionales. esto

pone de manifiesto que un proceso no ejecuta,si no que es sólo el espacio de

direcciones donde recide el código que es ejecutado mediante uno o más hilos.

En un S.O tradicional. Cada proceso tiene un espacio de direcciones y

un único hilo de control por ejemplo, considere que un programa que incluya la

siguiente secuencia de operaciones para actualizar el saldo de una cuenta

bancaria cuando se efectúa un nuevo ingreso:

Saldo=Cuenta.ObtenerSaldo ();

Saldo+=ingreso;

Cuenta.EstablecerSaldo (saldo);

Este modelo de programación, en el que se ejecuta un solo hilo, es en el que

estamos acostumbrados a trabajar habitualmente. Pero, siguiendo con el ejemplo

anterior piensa en un banco real; en el varios cajeros pueden

actuar simultáneamente. Ejecutar el mismo programa por cada uno de los cajeros

tiene un costo elevado (recuerde los recursos que necesita). En cambio si el

programa permitiera lanzar un hilo por cada petición de cada cajero para actualizar

una cuenta, estaríamos en el caso múltiples hilos ejecutandose concurrente

mente (multitriandi) . Esta característica ya es una realidad en los S.O modernos

de hoy y como consecuencia contemplada en los lenguajes

de programación actuales.

Cada hilo se ejecuta de forma estrictamente secuencial y tiene su propia pila en

estados de los registros de UCP y su propio contador de un programa en cambio

comparte el mismo espacio de direcciones, lo que significa compartir también las

mismas variables globales, el mismo conjunto de ficheros abiertos, procesos hijos

(no hilos hijos), señales, semáforos, etc.

Los hilos comparten la UCP de la misma forma que lo hacen los procesos pueden

crear hilos hijos y se pueden bloquear no obstante mientras un hilo del mismo

proceso, en el caso de hilos soportados por el kernel (núcleo del S.O: programas

en ejecución que hacen que el sistema funcione), no sucediendo lo mismo con los

hilos soportados por una aplicación por ejemplo en Windows NT todos los hilos

son soportados por el Kernel; imaginemos que alguien llaga a un cajero para

depositar dinero en una cuenta y casi al mismo tiempo un segundo cliente realiza

la misma operación sobre la misma cuanta en el segundo cajero quedara

bloqueado asta que el registro que esta siendo actualizado por el primer cajero

quede liberado.

4.2. Comparación de un programa de flujo único contra

uno de flujo múltiple

4.3. Creación y control de hilos

Los hilos de java se pueden crear en dos formas: escribiendo una nueva clase

derivada de Theread, o bien haciendo una clase existente implementa la interfaz

Runnable .

La clase Thread,que implemente la interfaz Runnable,de forma resimida,está

definida asi:

public class Thread extends Object implements Runnable

{

//Atributos

static int MAX_PRIORITY;

//Prioridad máxima que un hilo puede tener.

static int MIN_PRIORITY;

//Prioridad mínima que un hilo puede tener.

static int NORM_PRIORITY;

//Prioridad asignada por omisión a un hilo.

//Constructores

Thread ([argumentos])

//Métodos

static Theread currentThread()

//Devuelve una referencia al hilo que actualmente esta en ejecución.

long getID()

//Devuelve el identificador del hilo.

String getName()

//Devuelve el nombre del hilo.

int getPriority()

//Devuelve la prioridad del hilo.

void interrupt()

//Envía este hilo al estado de preparado.

boolean isAlive()

//Verifica sí este hilo está vivo (no ha terminado).

boolean isDaemon()

//Verifica sí este hilo es un demonio. Se da este nombre a

//un hilo se ejecuta en segundo plano, realizando una

//operación específica en tiempos predefinidos, o bien en

//respuestas a ciertos eventos.

boolean is Interrupted()

//Verifica si este hilo ha sido interrumpido.

void join([milisegundos[. nanosegundos]])

//Espera indefinidamente o el tiempo especificado,a que este

//hilo termine (a que muera).

void run()

4.4. Sincronización de hilos

Cuando se están utilizando hilos múltiples, algunas veces es necesario coordinar

las actividades de dos o más. El proceso por el cual se logra esto se

llama sincronización. La razón más común para la sincronización es cuando dos o

más hilos necesitan acceso a un recurso compartido que sólo puede ser utilizado

por un hilo a la vez. Otra razón para la sincronización es cuando un hilo está

esperando un evento causado por otro hilo. En este caso, debe de haber algún

medio por el cual el primer hilo se mantenga en estado suspendido hasta que el

evento ocurra.

La sincronización esta soportada por la palabra clave synchronized y por unos

cuantos métodos bien definidos que tienen todos los objetos.

